MiniTCP v0.12.4.27

Programmer’s reference manual
(¢)2011-2012 Mike Chambers

Table of contents

Functions

O J o0 U w N

W W W NNDNDNDNDNDNNNDRERR B B B B e o
N P O W0 s WNR O WO s WN P O -

tcplInit
tcpShutdown
load config
process packet
tcp changeip
tcp changesubnet
tcp changegateway
tcp changedns
dns query

dns query by token
dns resolve

tcp localip

tcp localsubnet
tcp gateway

tcp remoteip
tcp remoteport
tcp localport
tcp listen

tcp connect

tcp connect 2
tcp read

tcp peek

tcp send data
tcp _established
tcp close

udp send data
udp hook recv
attach timer
unattach timer
printip
sprintip
ipconvert



General overview

MiniTCP is a lightweight, open-source TCP/IP stack designed for 16-bit DOS systems. It is
implemented as a C library. It is designed to work with a standard DOS ethernet packet driver. It can
also be modified quite easily to work with some other method of ethernet support besides packet
drivers. If you plan to just use a regular DOS packet driver, you can skip the rest of this page.

To get rid of the packet driver specific code, remove the “static void far interrupt callback”
function. You must also remove the code in “void pkt_send” and replace it with code suitable to the
method with which you will access ethernet.

When you receive a new ethernet packet, you must copy the raw packet data into the structure at
packet[pktidx]. If the total size of this packet if greater than 1514 bytes, it is too large and you must
drop it.

After filling the structure with the new packet, call the function “static void far
have_new_packet”. This lets the TCP/IP stack know that there has been a new packet placed in it's
buffer.



int16 tcpInit(uint8 packet int, uint8 tcp _count, uintl6 tcp buffer_size);

Description:

Initializes the MiniTCP library. This must be called before using any sockets. You must set local
network settings BEFORE calling this function by using either load_config() or manually using
tcp_changeip(), tcp_changesubnet(), tcp_changegateway(), and tcp_changedns().

Parameters:

— packet int — Interrupt number of the installed packet driver for MiniTCP to use. It is almost
always 0x60.

— tep_count - The number of TCP socket structures to be allocated.
— tcp buffer size — Bytes of memory each TCP socket should allocate for incoming data.

Return value on success:
— MINITCP_STATUS OK

Return value on error:
— MINITCP_ERR PKT DRV — Could not get handle from packet driver.
— MINITCP_ERR OUT OF MEM - Unable to allocate enough memory for sockets.

— MINITCP_ERR TOO MANY —tcp count value given is greater than the value of
TCPMAXSOCKS when the library was compiled.

See also:
tcpShutdown, load_config, tcp_changeip, tcp_changesubnet, tcp_changegateway,
tcp_changedns



void tcpShutdown();

Description:

Disables the MiniTCP library. Should be used before exiting a program if MiniTCP was
previously initialized via tcpInit.

Parameters:
— None

See also:
teplnit



int16 load_config();

Description:

This can be used to configure MiniTCP settings by reading them from the file MINITCP.INIL
Before using tcplnit, the program must configure the network settings either with this function, or
manually setting value with tcp_changeip, tcp_changesubnet, tcp _changegateway, and
tcp_changedns.

Parameters:
— None

Return value on success:
— MINITCP_STATUS OK

Return value on error:
— MINITCP_ERR FILE — The config file could not be opened.

See also:
teplnit, tcp_changeip, tcp_changesubnet, tcp_changegateway, tcp_changedns



void process packet();

Description:

This function must be called regularly to make MiniTCP process buffered incoming ethernet
packets. Once all incoming packet buffers are used, MiniTCP will simply drop new incoming packets.
Call it often to avoid this situation. It is safe to attach this to the system timer interrupt. It will never be
re-entrant, because it disables interrupts until it is finished.

Parameters:
— None



void tcp_changeip(uint8 *string);

void tcp_changesubnet(uint8 *string);
void tcp_changegateway(uint8 *string);
void tcp_changedns(uint8 *string);

Description:
These can be used to configure MiniTCP local network settings manually. They should be used
before using tcplnit.

Parameters:

— *string — Pointer to a null-terminated string containing an appropriate dotted-quad. (i.e.
“192.168.1.107)

See also:
teplnit



uintl6 dns_query(uint8 *hostname, uint8 *ipdest, uint16 *id_token);

Description:

Initiates a non-blocking hostname resolution query. After initiating this query, the program
should use the value returned into the variable pointed at by id_token with the dns_query by token
function repeatedly to check for an answer from the DNS server.

Parameters:

— *hostname — Pointer to a null-terminated string containing the hostname which the program
needs to resolve. It is safe to give a hostname string given of a valid IP address in dotted-quad
format. It will simply be instantly “resolved” internally without sending a packet to the DNS
server.

— “*ipdest — Pointer to a 4-byte buffer supplied by your program in which this call will
immediately place the resolved IP address if it was already in our local cache. If this happens,
the function's return value is non-zero.

Return value on success:

— Non-zero — The hostname supplied was already in the local cache or was a valid dotted-quad
already. The resolved IP address was placed in a 4-byte buffer which you supplied a pointer to
as *ipdest. There is no need for any further calls to complete the operation.

— Zero — The DNS query has been sent. Use the value placed in *id_token in calls to the
dns_query_by_token until it returns an IP address, or you decide to give up.

See also:
dns_query_by_token, dns_resolve



uintl6 dns_query_ by token(uintl6 *id_token, uint8 *ipdest);

Description:
Checks if a previous query identified by the token has received a response.

Parameters:
— *id_token — Pointer to a uint16 containing the token to use. Should be the same pointer you
gave in the dns_query function call.
— “*ipdest — Pointer to a 4-byte buffer supplied by your program in which this call will place the
resolved IP address, if available. If this happens, the function's return value is non-zero.

Return value on success:
— Non-zero — The hostname was successfully resolved to an IP. The resolved IP address was
placed in a 4-byte buffer which you supplied a pointer to as *ipdest.
— Zero — There has not yet been a response to the query you specified.

See also:
dns_query, dns_resolve



uintl6 dns_resolve(uint8 *hostname, uint8 *ipdest, uint16 timeout);

Description:

Performs a blocking call to resolve a hostname or IP address dotted-quad, and if successful,
places the result into the 4-byte buffer you specified a pointer to as *ipdest. If MiniTCP was unable to
resolve the given hostname within the time specified (in milliseconds) in timeout, it will return a value
of zero and will not modify the data at *ipdest.

Parameters:

— *hostname — Pointer to a null-terminated string containing the hostname which the program
needs to resolve. It is safe to give a hostname string given of a valid IP address in dotted-quad
format. It will simply be instantly “resolved” internally without sending a packet to the DNS
server.

— *ipdest — Pointer to a 4-byte buffer supplied by your program in which this call will place the
resolved IP address, if resolution was successful. If this happens, the function's return value is
non-zero.

— timeout — Specifies the maximum amount of time to wait for a DNS result before failing, in
milliseconds.

Return value on success:
— Non-zero — The hostname was successfully resolved to an IP. The resolved IP address was
placed in a 4-byte buffer which you supplied a pointer to as *ipdest.
— Zero — The hostname resolution attempt failed. *ipdest has not been modified.

See also:
dns_query, dns_query_by token



uint8 *tcp localip();

uint8 *tcp localsubnet();

uint8 *tcp_localgateway();

uint8 *tcp_localdns();

uint8 *tcp_remoteip(uint16 handle);

Description:
These functions return a pointer to the appropriate 4-byte value.

Parameters:
— None

Return value:
— Auint8 pointer to a 4-byte value of the appropriate type.



uint16 tcp_remoteport(uint16 handle);
uint16 tcp_localport(uint16 handle);

Description:
These functions return a uintl6 according to their names, the remote or local port number for a
specific TCP socket.

Parameters:
— handle — The handle value of the TCP socket that was given when it was created.

Return value:
— Anintl6 with the requested data.



int16 tcp_listen(uint16 local port);

Description:
Opens a new TCP socket as a listener for incoming connections on the given port. Returns the
handle value of the new socket if successful, otherwise returns -1.

Parameters:
— local port — The local port number this socket should listen for connections on.

Return value:
— -1 on failure.
— Any other value is the handle value of the new socket.

See also:
tcp_connect, tcp_connect_2, tcp_close



intl6 tcp_connect(uint8 *remote _ip, uintl6 remote_port);

Description:

Opens a new outgoing TCP socket on the given port. *remote_ip is a pointer to a null-
terminated string with the target IP address in dotted-quad format. (i.e. “192.168.1.10”) Returns the
handle value of the new socket if successful, otherwise returns -1.

Parameters:
— *remote_ip — Pointer to null-terminated string with IP in dotted-quad format.
— remote port — The local port number this socket should listen for connections on.

Return value:
— -1 on failure.
— Any other value is the handle value of the new socket.

See also:
tcp_connect_2, tcp_listen, tcp_close



intl6 tcp_connect 2(uint8 *ipaddr, uintl6 remote port);

Description:

Opens a new outgoing TCP socket on the given port. *ipaddr is a pointer to a 4-byte value in
memory of the target IP address. Returns the handle value of the new socket if successful, otherwise
returns -1.

Parameters:
— *ipaddr — Pointer to 4-byte IP address in memory.
— remote port — The local port number this socket should listen for connections on.

Return value:
— -1 on failure.
— Any other value is the handle value of the new socket.

See also:
tcp_connect_2, tcp_listen, tcp_close



uint16 tcp_read(uintl6 handle, uint8 *dest, uint16 maxlen);

Description:

Reads data from incoming data buffer of an open TCP socket specified by handle. Specify the
maximum length of data that the buffer given in *dest can hold. After data is transferred to *dest, it is
removed from the socket buffer.

Parameters:
— handle — Handle number of open TCP socket.
— *dest — Pointer to buffer where the data should be copied to.
— maxlen — The maximum size in bytes that the given buffer can hold.

Return value:
— Amount of data actually copied to destination buffer. Can range from 0 to value given in
maxlen.

See also:
tcp_peek, tcp_send_data



uint16 tcp_peek(uint16 handle, uint8 *dest, uint16 maxlen);

Description:

Reads data from incoming data buffer of an open TCP socket specified by handle. Specify the
maximum length of data that the buffer given in *dest can hold. This call is identical to tcp_read,
except that after the data is copied to the destination buffer, it remains in the TCP socket's buffer.

Parameters:
— handle — Handle number of open TCP socket.
— *dest — Pointer to buffer where the data should be copied to.
— maxlen — The maximum size in bytes that the given buffer can hold.

Return value:
— Amount of data actually copied to destination buffer. Can range from 0 to value given in
maxlen.

See also:
tcp_read, tcp_send_data



uint16 tcp_send_data(uint16 handle, uint8 *src, uint16 len);

Description:

Sends data to remote peer on an open TCP socket specified by handle. Specify the length of
data to send from the *src pointer. Your program is responsible for limiting the size to send, which
should not exceed 1400 bytes. Returns amount of data sent. If MiniTCP was not able to immediately
send the data, it returns zero and you must try again.

Parameters:
— handle — Handle number of open TCP socket.
— *src — Pointer to buffer where the data to send is.
— len — The size in bytes to send from that pointer.

Return value:
— Amount of data actually sent. Can range from 0 to value given in len.



intl6 tcp_established(uint16 handle);

Description:

Use this to determine if there is a currently active connection on the specified TCP socket
handle.

Parameters:
— handle — Handle number of open TCP socket.

Return value:
— Non-zero if socket is connected.
— Zero if it is disconnected.



void tcp_close(uint16 handle);

Description:
Closes a TCP socket connection specified by handle. It is safe to call tcp _close on a socket that
was already disconnected.

Parameters:
— handle — Handle number of open TCP socket.



void udp_send_data(uint8 *remote_ip, uintl6 remote port, uintl6 local_port, uint8
*data, uint16 len);

Description:

Sends data to remote peer in via UDP. *remote_ip must be a pointer to a 4-byte IP address in
memory, not a dotted-quad string. ip_convert can be used to convert a dotted-quad format string to
this 4-byte form.

Parameters:
— *remote ip — Pointer to 4-byte remote IP to send to.
— remote port — Port number to send to remote peer on.
— local_port — Local port number.
— *data — Pointer to buffer of data to send.
— Len — Length of data in *data outgoing buffer in bytes. Limit this to 1400 or less.

See also:
udp_hook_recv



void udp hook recv(void far *callback ptr);

Description:

Sets a callback pointer in your program that will be used whenever there is a new incoming
UDP packet. See the example program UDPTEST.C for details on how this callback function works.
UDP receive can be disabled again later by passing (void far *)NULL.

NOTE: MiniTCP will never forward incoming UDP packets that are addressed to port 53. This port is
reserved for the internal DNS resolution feature.

Parameters:
— “*callback ptr — A far pointer to your program's UDP receive callback function.



void ipconvert(uint8 *string, uint8 *dest);

Description:

Converts a null-terminated string in *string containing an IP address in dotted-quad format
(i,e. “192.168.1.107) to a 4-byte value and stores it in *dest.

Parameters:

— ’*string — Pointer to null-terminated dotted-quad format IP address string.
— *dest — Pointer to store the resulting 4-byte value



void printip(uint8 *src);

Description:
Converts a 4-byte IP address value to dotted-quad format and prints it to the screen.

Parameters:
— *src — Pointer to 4-byte IP address value.

See also:
sprintip



uint16 sprintip(uint8 *dest, uint8 *src);

Description:
Converts a 4-byte IP address value to dotted-quad format and stores the resulting null-
terminated string to the pointer supplied by *dest.

Parameters:
— *dest — Pointer to which the output string will be stored.
— *src — Pointer to 4-byte IP address value.

Return value:
Returns the length of the resulting string in byte.

See also:
printip



void attach_timer(uint32 *timerptr);

Description:

This function causes the 32-bit value in *timerptr to start being updated by MiniTCP in real-
time. It's value measured in millisends.

Parameters:
— “*timerptr — Pointer to your 32-bit timer variable.

See also:
unattach_timer



void unattach_timer();

Description:
This function causes the 32-bit value in *timerptr to stop being updated.

Parameters:
— None.

See also:
attach_timer



